Natural and Lesion-Induced Decrease in Cell Proliferation in the Medial Nucleus of the Trapezoid Body During Hearing Development
نویسندگان
چکیده
The functional interactions between neurons and glial cells that are important for nervous system function are presumably established during development from the activity of progenitor cells. In this study we examined proliferation of progenitor cells in the medial nucleus of the trapezoid body (MNTB) located in the rat auditory brainstem. We performed DNA synthesis labeling experiments to demonstrate changes in cell proliferation activity during postnatal stages of development. An increase in cell proliferation correlated with MNTB growth and the presence of S100β-positive astrocytes among MNTB neurons. In additional experiments we analyzed the fate of newly born cells. At perinatal ages, newly born cells colabeled with the astrocyte marker S100β in higher numbers than when cells were generated at postnatal day 6. Furthermore, we identified newly born cells that were colabeled with caspase-3 immunohistochemistry and performed comparative experiments to demonstrate that there is a natural decrease in cell proliferation activity during postnatal development in rats, mice, gerbils, and ferrets. Lastly, we found that there is a stronger decrease in MNTB cell proliferation after performing bilateral lesions of the auditory periphery in rats. Altogether, these results identify important stages in the development of astrocytes in the MNTB and provide evidence that the proliferative activity of the progenitor cells is developmentally regulated. We propose that the developmental reduction in cell proliferation may reflect coordinated signaling between the auditory brainstem and the auditory periphery.
منابع مشابه
Changes in calbindin-D28k and parvalbumin expression in the superior olivary complex following unilateral cochlear ablation in neonatal rats.
CONCLUSION Unilateral congenital deafness with a volume reduction in cochlear nucleus (CN) induced changes in the calcium-binding proteins (CaBPs) in the contralateral superior olivary complex (SOC) in the rat. With the loss of neurons and a volume reduction in the CN, a decrease in the input to the contralateral SOC may occur, which results in the down-regulation of CaBPs in these nuclei. This...
متن کاملDistribution of glial cells in the auditory brainstem: normal development and effects of unilateral lesion.
Auditory brainstem networks facilitate sound source localization through binaural integration. A key component of this circuitry is the projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid body (MNTB), a relay nucleus that provides inhibition to the superior olivary complex. This strictly contralateral projection terminates in the large calyx of Held synapse...
متن کاملFormation and maturation of the calyx of Held.
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the cal...
متن کاملEffect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.
Activity-dependent transneuronal regulation of neuronal soma size has been studied in the medial nucleus of the trapezoid body and ventral cochlear nucleus of adolescent gerbils. Cochlear ablation or tetrodotoxin has been used to eliminate afferent electrical activity in auditory nerve fibers permanently or for 24 or 48 hours. Previous studies have shown that the cross-sectional area of spheric...
متن کاملAnalgesic effect of morphine microinjected into the nucleus raphe magnus after electrolytic lesion of nucleus cuneiformis in tail-flick and formalin tests in rat
Introduction: The antinociceptive effect of morphine is, in part, mediated through the activation of a descending pathway. One of the major components of this pathway is the nucleus raphe magnus (NRM). Our previous study demonstrated the involvement of NRM in the analgesic effect of morphine microinjected into the nucleus cuneiformis (NCF) in a descending manner. The aim of the current study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 522 شماره
صفحات -
تاریخ انتشار 2014